Macroscopic Quantum Resonators (MAQRO): 2015 update
نویسندگان
چکیده
Rainer Kaltenbaek , Markus Aspelmeyer, Peter F Barker, Angelo Bassi, James Bateman, Kai Bongs, Sougato Bose, Claus Braxmaier, Časlav Brukner, Bruno Christophe, Michael Chwalla, Pierre-François Cohadon, Adrian Michael Cruise, Catalina Curceanu, Kishan Dholakia, Lajos Diósi, Klaus Döringshoff, Wolfgang Ertmer, Jan Gieseler, Norman Gürlebeck, Gerald Hechenblaikner, Antoine Heidmann, Sven Herrmann, Sabine Hossenfelder, Ulrich Johann, Nikolai Kiesel, Myungshik Kim, Claus Lämmerzahl, Astrid Lambrecht, Michael Mazilu, Gerard J Milburn, Holger Müller, Lukas Novotny, Mauro Paternostro, Achim Peters, Igor Pikovski, André Pilan Zanoni, Ernst M Rasel, Serge Reynaud, Charles Jess Riedel, Manuel Rodrigues, Loïc Rondin, Albert Roura, Wolfgang P Schleich, Jörg Schmiedmayer, Thilo Schuldt, Keith C Schwab, Martin Tajmar, Guglielmo M Tino, Hendrik Ulbricht, Rupert Ursin and Vlatko Vedral
منابع مشابه
Macroscopic quantum resonators (MAQRO) Testing quantum and gravitational physics with massive mechanical resonators
Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigati...
متن کاملExamples of Quantum Dynamics in Optomechanical Systems
Optomechanical systems exploit the interaction between the optical radiation field and mechanical resonators in a laser-driven cavity. In the past few years, these systems have been the focus of considerable experimental and theoretical attention, yielding promising successes, particularly in using optomechanical cooling to reduce the thermal occupation of the resonators. This offers the prospe...
متن کاملParametric coupling between macroscopic quantum resonators
Time-dependent linear coupling between macroscopic quantum resonator modes generates both a parametric amplification also known as a “squeezing operation” and a beam splitter operation, analogous to quantum optical systems. These operations, when applied properly, can robustly generate entanglement and squeezing for the quantum resonator modes. Here, we present such coupling schemes between a n...
متن کاملEntangling two macroscopic mechanical mirrors in a two-cavity optomechanical system
We propose a simple method to generate quantum entanglement between two macroscopic mechanical resonators in a two-cavity optomechanical system. This entanglement is induced by the radiation pressure of a single photon hopping between the two cavities. Our results are analytical, so that the entangled states are explicitly shown. Up to local operations, these states are two-mode three-component...
متن کاملFast universal quantum gates on microwave photons with all-resonance operations in circuit QED
Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct th...
متن کامل